Über die Veresterung der Monooxybenzoesäuren durch alkoholische Salzsäure

von

A. Kailan.

Aus dem I. chemischen Laboratorium der k. k. Universität in Wien.

(Vorgelegt in der Sitzung am 10. Jänner 1907.)

Im Anschluß an meine Untersuchungen über die Veresterungsgeschwindigkeit der Nitro-¹ und Amidobenzoesäuren² in »absolutem« und in wasserhaltigem Alkohol erschien es wünschenswert, auch die diesbezüglichen Werte für die drei Monooxysäuren zu bestimmen. Für die Salicylsäure hat zwar schon Goldschmidt³ die Konstante für wasserarmen Alkohol gemessen, doch ohne Berücksichtigung der Chloräthylbildung— die hier bei der geringen Reaktionsgeschwindigkeit nicht vernachlässigt werden darf — sowie unter Benützung von Phenolphtaleïn als Indikator, was, wie später gezeigt werden soll, hier nicht zulässig ist.

Aus diesen Gründen habe ich auch diese Säure in den Bereich meiner Untersuchungen gezogen; allerdings beschränkte ich mich hier mit Rücksicht auf die bereits erwähnte sehr kleine Reaktionsgeschwindigkeit auf Lösungen in sehr wasserarmem Alkohol.

¹ Die Veresterung der Ortho-, Meta- und Paranitrobenzoesäure durch alkoholische Salzsäure. Ann. der Chemie (im Drucke), Lieben-Festschrift, p. 339.

² Über die Veresterung der Amidobenzoesäuren durch alkoholische Salzsäure. Monatshefte für Chemie, 27, 997 (1906).

³ Ber. der Deutschen chem. Ges., 28, 3218 (1895).

Versuchsmethode.

Die Versuchsanordnung war die gleiche wie bei den Amidosäuren, ebenso ist die Bedeutung der Buchstaben in den folgenden Tabellen die gleiche wie dort; ich kann daher diesbezüglich auf das dort Gesagte verweisen.

Die bei der Salicylsäure wegen der Chloräthylbildung angebrachte Korrektur beträgt 6.10^{-5} Ct cm^{s} . $c_m = c_0 - \frac{d}{2}$.

Einige Schwierigkeit bot bei der *m*- und *p*-Oxybenzoesäure die Wahl eines geeigneten Indikators. Phenolphtaleïn ist gänzlich unbrauchbar, ebenso ist Congorot, das Walker und Wood² mit gutem Erfolg in rein wässerigen Lösungen anwendeten, hier vermutlich wegen der Anwesenheit des Alkohols nicht verwendbar. Auch Lackmus, Methylorange, Alizarin erwiesen sich als ungeeignet. Dagegen fand ich Rosolsäure, die ich auf den Rat des Herrn Prof. Wegscheider versuchte, recht brauchbar, besonders wenn man Sorge trug, daß der Indikator stets angenähert in gleicher Konzentration vorhanden war (ich setzte auf je 10 bis 12 cm³ Flüssigkeit je 2 Tropfen einer halbprozentigen alkoholischen Rosolsäurelösung zu).

$$d = 6.10^{-5} (C - e)t$$

statt $d = 10^{-6}(C-e)t$; und in der letzteren Anmerkung überdies:

$$C_{\text{ber.}} = C - d$$
,

nicht $c-\frac{d}{2}$. Die Rechnung ist auch dort überall mit dem richtigen Werte der Konstanten durchgeführt.

¹ Infolge eines Fehlers beim Abschreiben ist in meiner Abhandlung über die Amidosäuren die Geschwindigkeitskonstante der Chloräthylbildung — für natürliche Logarithmen — mit 6.10⁻⁶ statt mit 6.10⁻⁵ angegeben. Es soll daher auf p. 3 (p. 801 der Sitzungsberichte der k. Akad. der Wissenschaften in Wien, mathem.-naturw. Klasse, Bd. CXV, Abt. II b, 1906), [Monatshefte für Chemie, 27, 999] überall 6.10⁻⁵ statt 6.10⁻⁶ heißen, ebenso p. 10 (808), [1006], Anmerkung 2, und p. 35 (833), [1031], Anmerkung 2:

² Journal of the Chemical Society of London, 73, 621.

Orthooxybenzoesäure.

Der Salizylsäureäthylester verhält sich Phenolphtaleïn gegenüber wie eine schwache Säure. Bei der Bestimmung der Veresterungsgeschwindigkeit der Salizylsäure unter Benützung dieses Indikators erhält man daher zu niedrige Konstanten. Doch zeigen die letzteren kein starkes Absinken, weil der Mehrverbrauch an Alkali wegen der sehr beschränkten Löslichkeit des Salizylsäureesters in dem bei der Titration vorliegenden Alkohol—Wassergemisch mit dem Fortschreiten der Reaktion nicht zunehmen kann (vergl. Tabelle I, Nr. 1).

Rosolsäure erweist sich dagegen auch hier als recht brauchbarer Indikator. So zeigten 4 cm³ Salizylsäureester, mit 10 cm³ Wasser versetzt, mit 3 Tropfen einer halbprozentigen Rosolsäurelösung und 0·05 cm³ einer zirka ¹/8 norm. Barytlauge deutliche Rosafärbung; dagegen verbrauchte das gleiche Gemisch mit 2 Tropfen einer halbprozentigen Phenolphtaleïnlösung als Indikator zirka 0·2 cm³ der gleichen Lauge. Andrerseits wurden für 2 cm³ Ester, gelöst in 10 cm³ absolutem Alkohol, mit 3 Tropfen Rosolsäurelösung 0·08 cm³ Lauge verbraucht, während mit 2 Tropfen einprozentiger Phenolphtaleïnlösung als Indikator erst nach Zusatz von 4 bis 5 cm³ Barytlauge, während gleichzeitig Trübung (Ausscheidung von Ester) eingetreten war, eine ganz schwache Rosafärbung eintrat.

Daher wurde auch bei den folgenden Versuchen, mit Ausnahme von Nr. 1, durchwegs Rosolsäure als Indikator verwendet. Bei Nr. 1 wurde mit Phenolphtaleïn titriert und nur die beiden mit Sternchen versehenen Bestimmungen dieses Versuches unter Benützung von Rosolsäure gemacht. Zur Mittelbildung wurden nur diese beiden Titrationen herangezogen.

Tabelle I.

Nr. 1.

$$c = 0.6622;$$
 $A = 0.0938;$ $C = 25.98;$ $a = 3.68;$ $d = \frac{25.03^{\circ}}{4^{\circ}} = 0.78530;$

 $w_0 = 0.017$; $w_m = 0.049$; $c_m = 0.657$.

			105			
t	(a-x)	Korr. cm³	k	$\frac{k}{c}$	k korr.	$\frac{k}{c_m}$ korr.
0.32	$3 \cdot 72$					
$42 \cdot 95$	$3 \cdot 22$		135	202		
66.7	2.88		160	241	_	
$140 \cdot 2$	$2 \cdot 32$		143	216		
234.6	1.57		158	238		
234.8*	1 · 44	0.36	172	259	132	201
320.5	1.05		170	257		*****
320.6*	0.80	0.50	191	288	131	200
	M	ittelwerte	. 181	273	132	200

Nr. 2. $c = 0.6625; \quad A = 0.0938; \quad C = 26.00; \quad a = 3.68;$ Alkohol wie bei Nr. 1; $w_m = 0.045; \quad c_m = 0.658.$

				105			
t	(a-x)	Korr. cm³	k	$\frac{k}{c}$	k korr.	$\frac{k}{c_m}$ korr.	
0.4	$3 \cdot 72$						
$20 \cdot 4$	$3 \cdot 39$	0.03	176	266	157	238	
66.5	$2 \cdot 80$	0.10	179	270	156	236	
140 · 1	2.15	0.22	167	252	137	207	
234.8	1.38	0.36	182	274	139	211	
257.6	1.26	0.40	181	273	134	204	
320.0	0.97	0.50	181	273	125	190	
	Mi	ttelwerte	. 179	270	135	205	

Nr. 3. $c = 0.3310; \quad A = 0.0938; \quad C = 12.99; \quad a = 3.68;$ Alkohol wie bei Nr. 1; $w_m = 0.041; \quad c_m = 0.329.$

			105			
t	a—x	Korr. cm³	k	$\frac{k}{c}$	k korr.	$\frac{k}{c_m}$ korr.
0.3	3.63					
$67 \cdot 20$	3.21	0.05	88.4	267	$78 \cdot 4$	238
166.8	2.65	0.13	85.5	259	73 · 1	222
$234 \cdot 8$	2.31	0.18	86.2	260	$72 \cdot 3$	220
329.4	1.91	0.26	86.5	261	69.7	212
428.0	1.61	0.33	83.9	254	65.0	194
572.0	1.17	0.44	87.0	263	62.8	193
	M	ittelwerte	. 85.8	259	67.6	205

Nr. 4. $c = 0.3310; \quad A = 0.0938; \quad C = 12.99; \quad a = 3.68;$ Alkohol wie bei Nr. 1; $w_m = 0.041; \quad c_m = 0.326.$

			105					
t	a—x	Korr. cm³	k	$\frac{k}{c}$	k korr.	$\frac{k}{c_m}$ korr.		
0.45	3.61			_				
91.6	$2 \cdot 99$	0.07	98.5	297	87.6	265		
166.9	2.63	0.13	$87 \cdot 2$	264	$74 \cdot 9$	227		
234.8	$2 \cdot 29$	0.18	$87 \cdot 4$	264	$73 \cdot 8$	224		
379.6	1.73	0.30	86.4	261	68 · 1	208		
$427 \cdot 8$	1:56	0.33	$87 \cdot 2$	263	$67 \cdot 6$	207		
572.1	1.18	0.44	84.9	256	61.2	192		
	M	ittelwerte	. 86.8	262	68.3	209		

120

Nr. 5. $c = 0.1646; \quad A = 0.0938; \quad C = 6.46; \quad a = 3.68;$ Alkohol wie bei Nr. 1; $w_m = 0.035; \quad c_m = 0.162.$

				105		
t	ax	Korr. cm³	k	$\frac{k}{c}$	k korr.	$\frac{k}{c_m}$ korr.
0.25						
119.0	$3 \cdot 34$	0.02	35.5	215	30.0	183
$234 \cdot 7$	$2 \cdot 92$	0.09	42.8	260	$37 \cdot 2$	228
330.0	$2 \cdot 71$	0.13	40.3	245	$34 \cdot 1$	210
496.9	2.31	0.19	40.7	247	33.8	208
641.8	$2 \cdot 02$	0.25	40.6	247	$32 \cdot 7$	203
726 · 7	1.90	0.28	39.5	240	31 3	194
	Mi	ittelwerte	. 40.3	245	$32 \cdot 9$	203

Obige Zahlen zeigen, daß die Reaktionsgeschwindigkeit der Salzsäurekonzentration proportional ist. Ordnet man die Versuche nach steigenden Werten von c_m , so gelangt man zu folgender Zusammenstellung:

c_m	0.162	0.326	0.329	0.658
$10^5 \cdot \frac{k}{c_m} \text{ korr.} \dots$	203	209	205	2 05
$10^3.w_m\ldots$	35	41	41	45

Diese Konstanten schwanken unregelmäßig um einen Mittelwert von k=0.00206 für $w_m=0.041$. Das Mittel der unkorrigierten Werte (245, 262, 259, 270.10⁻⁵) wäre 0.00259. Goldschmidt fand ohne Berücksichtigung der Chloräthylbildung (also unkorrigiert) und mit Phenolphtaleïn als Indikator 0.0021.

Metaoxybenzoesäure.

Den Schmelzpunkt der aus Wasser umkristallisierten und bei 120° getrockneten Säure fand ich bei 200° in Übereinstimmung mit der Angabe von Fischer, dagegen im Widerspruch mit der Angabe von Kellas, der 188° gefunden hatte.

1. Versuche mit »absolutem« Alkohol.

Tabelle II.

Nr. 1.

$$c = 0.6527; \quad A = 0.0972; \quad C = 25.61; \quad a = 3.81_5;$$

$$d \frac{24.97^{\circ}}{4^{\circ}} = 0.78562;$$

$$w_0 = 0.052; \quad w_m = 0.083.$$

$$t \quad a - x \quad k \quad k/c$$

$$0.45 \quad 3.64 \quad - \quad -$$

$$5.05 \quad 2.51 \quad 0.0360 \quad 0.0552$$

$$7.63 \quad 2.06 \quad 0.0351 \quad 0.0537$$

$$8.16 \quad 2.00 \quad 0.0344 \quad 0.0527$$

$$23.0 \quad 0.60 \quad 0.0349 \quad 0.0535$$

$$23.13 \quad 0.62 \quad 0.0341 \quad 0.0523$$

$$24.50 \quad 0.59 \quad 0.0331 \quad 0.0507$$

$$Mittelwerte... \quad 0.0346 \quad 0.0530$$

$$k \text{ ber.} = 0.03538;^3$$

$$f^0/_0 = -2.25;^4$$

$$v = 0.159.^4$$

¹ Ann. der Chemie, 127, 148.

² Zeitschr. für phys. Chemie, 24, 221 (1897).

³ Berechnet nach der im Abschnitte 4 gegebenen Formel.

⁴ Bezüglich der Bedeutung von $f^{\,0}/_0$ und v verweise ich auf meine Ausführungen bei den Amidosäuren.

122

A. Kailan,

Nr. 2.

c = 0.3273; A = 0.0975; C = 12.84; $a = 3.82_5$; Alkohol wie bei Nr. 1; $w_m = 0.083$.

t	a-x	\boldsymbol{k}	k/c
0.35	3.71		
15.65	1.93	0.0190	0.0580
18.85	1.76	0.0179	0.0547
21.85	1.52	0.0183	0.0560
$24 \cdot 40$	1.40	0.0179	0.0547
$39 \cdot 70$	0.78	0.0174	0.0531
39.80	0.78	0.0174	0.0530

Mittelwerte . . . 0.0180 0.0549

k ber. =
$$0.01828$$
;
 $f^{0}/_{0} = -1.67$;
 $v = 0.118$.

Nr. 3.

c = 0.3273; A = 0.0975; C = 12.84; $a = 3.82_5$; Alkohol wie bei Nr. 1; $w_m = 0.085$.

ŧ	a-x	k	k/c
0.32	3.71		
$15 \cdot 43$	1.90	0.0197	0.0596
21.83	1.48	0.0189	0.0577
21.90	1.49	0.0187	0.0571
$24 \cdot 4$	1.36	0.0184	0.0562
39.8	0.76	0.0176	0.0539
$45 \cdot 45$	0.62	0.0174	0.0531

Mittelwerte . . . 0 · 0184 0 · 0563

k ber. =
$$0.01817$$
;
 $f^{0}/_{0} = +1.30$;
 $v = 0.090$.

Nr. 4. $c = 0.1631; \quad A = 0.0977; \quad C = 6.40; \quad a = 3.83;$ Alkohol wie bei Nr. 1; $w_m = 0.080$.

t	a-x	(a-x) ber.	Diff.	k	k/c
0.30	3.80	3.81	0.01		
17.70	2.65	2.65	± 0.00	0.00902	0.0555
$24 \cdot 35$	$2 \cdot 35$	$2 \cdot 32$	+0.03	0.00873	0.0535
$40 \cdot 45$	1.70	1.73	0.03	0.00873	0.0535
$43 \cdot 26$	1.62	1.65	0.03	0.00807	0.0495
65.55	1.10	1.13	-0.03	0.00827	0.0507
$89 \cdot 55$	0.75	0.77	0.02	0.00791	0.0485
			••• •	0.0000	0.0514

Mittelwerte... 0.00837 0.0514

$$k \text{ ber.} = 0.00864;$$

 $f^{0}/_{0} = -3.27;$
 $v = 0.230.$

Nr. 5.

$$c = 0.3286$$
; $A = 0.0962$; $C = 12.89$; $a = 3.77$;
$$d\frac{25^{\circ}}{4^{\circ}} = 0.78536$$
;

$$w_0 = 0.020; \quad w_m = 0.048.$$

t	ax	k	k/c
0.25	3.71		
13.7	1.99	0.0203	0.0617
13.85	1.97	0.0204	0.0620
14.15	1.90	0.0209	0.0636
$20 \cdot 25$	1.50	0.0198	0.0602
$22 \cdot 80$	$1 \cdot 32$	0.0200	0.0909
39.75	0.64	0.0194	0.0590

Mittelwerte... 0.0202 0.0613

$$k \text{ ber.} = 0.0203_6;$$
 $f^0/_0 = -0.79;$
 $v = 0.055.$

Nr. 6.

c = 0.1633; A = 0.0961; C = 6.41; a = 3.77; Alkohol wie bei Nr. 5; $w_m = 0.047$.

t	a-x	\boldsymbol{k}	k/c
0.4	$3 \cdot 74$		
14.35	2.61	0.01114	0.0682
19.60	2.31	0.01086	0.0665
$22 \cdot 70$	$2 \cdot 17$	0.01057	0.0647
$40 \cdot 20$	$1 \cdot 47$	0.01018	0.0623
40.32	1.44	0.01037	0.0635
67.90	0.83	0.00968	0.0593

Mittelwerte . . . 0.01037 0.0635

k ber. =
$$0.01037$$
;
 $f^{0}/_{0} = 0$;
 $v = 0$.

Nr. 7.

$$c = 0.6758;$$
 $A = 0.0923;$ $C = 26.52;$ $a = 3.62;$ $d = \frac{25^{\circ}}{4^{\circ}} = 0.78536;$

$$w_0 = 0.020; \quad w_m = 0.046.$$

t	a-x	k	k/c
0.25	3.52	-	
2.55	$2 \cdot 86$	0.0402	0.0595
4.45	$2 \cdot 36$	0.0418	0.0618
$6 \cdot 20$	$2 \cdot 07$	0.0392	0.0580
6.70	2.00	0.0382	0.0570
19.72	0.59	0.0399	0.0591
19.84	0.62	0.0386	0.0572

Mittelwerte . . . 0.0395 0.0585

k ber. =
$$0.0385_3$$
;
 $f^0/_0 = +2.45$;
 $v = 0.170$.

Nr. 8. $c = 0.3381; \quad A = 0.0923; \quad C = 13.27; \quad a = 3.62;$ Alkohol wie bei Nr. 7; $w_m = 0.051$.

a-x	a-x ber.	Diff.	k	k/c
3.52	$3 \cdot 54$	-0.02		
3.05	3.00	0.04	0.0241	0.0714
1.60	1.65	0.02	0.0218	0.0644
1.55	1.60	-0.05	0.0216	0.0638
$1 \cdot 30$	1.33	-0.03	0.0209	0.0618
1 · 27	$1 \cdot 32$	-0.05	0.0213	0.0629
0.58	0.57	+0.01	0.0194	0.0574
0.54	0.56	0.02	0.0500	0.0592
	3·52 3·05 1·60 1·55 1·30 1·27 0·58	3·52 3·54 3·05 3·09 1·60 1·65 1·55 1·60 1·30 1·33 1·27 1·32 0·58 0·57	3 · 52 3 · 54 -0 · 02 3 · 05 3 · 09 -0 · 04 1 · 60 1 · 65 -0 · 05 1 · 55 1 · 60 -0 · 05 1 · 30 1 · 33 -0 · 03 1 · 27 1 · 32 -0 · 05 0 · 58 0 · 57 +0 · 01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Mittelwerte ... 0.0209 0.0619

$$k \text{ ber.} = 0.0207_2;$$

 $f^0/_0 = +1.00;$
 $v = 0.067.$

Nr. 9.

$$c = 0.1681$$
; $A = 0.0923$; $C = 6.60$; $a = 3.62$;
Alkohol wie bei Nr. 8; $w_m = 0.049$.

t	ax	k	k/c
0.57	3.60		
16.68	$2 \cdot 38$	0.01094	0.0651
21.50	2.06	0.01140	0.0678
41 · 10	1.32	0.01066	0.0632
43.63	1.28	0.01036	0.0616
47.30	1.19	0.01022	0.0608
64.80	0.83	0.00987	0.0587

Mittelwerte..., 0.01047 0.0622

k ber. =
$$0.01056$$
;
 $f^{0}/_{0} = -0.86$;
 $v = 0.057$.

Ordnet man die Versuche mit dem mittleren Wassergehalte 0.046 bis 0.051 nach steigender Salzsäurekonzentration, so erhält man:

$$c$$
 0.1633 0.1681 0.3286 0.3381 0.6758 $10^4 \cdot \frac{k}{c}$... 635 622 613 619 585 $10^3 w_m$... 47 49 48 51 46

Obige Werte von k/c weisen einen allerdings unbedeutenden Gang in dem Sinne auf, daß die Reaktionsgeschwindigkeit etwas langsamer zu wachsen scheint als die HCl-Konzentration. Indessen übersteigen selbst die Abweichungen der äußersten Werte (0.0635 und 0.0585) nicht die möglichen Versuchsfehler. Dieser Gang tritt, wenn er tatsächlich vorhanden ist, jedenfalls schon bei etwas größerem Wassergehalt zurück, wie die folgende Zusammenstellung der Versuche mit $w_m = 0.080$ bis 0.085 lehrt:

$$c$$
 0·1631 0·3273 0·3273 0·6527 $10^4 \cdot \frac{k}{c}$... 514 549 563 530 $10^3 \ w_m$... 80 83 85 83

Die k/c schwanken unregelmäßig um einen Mittelwert von 0.0539 für $w_m = 0.083$; die Abweichungen der äußersten Werte (0.0514 und 0.0563) übersteigen nicht die möglichen Versuchsfehler. Der Mittelwert der Versuche der ersten Zusammenstellung würde dagegen 0.0615 für $w_m = 0.048$ betragen.

2. Versuche mit wasserhaltigem Alkohol.

Tabelle III.

$$w_0 = 0.345.$$

Nr. 1.

$$c = 0.3262;$$
 $A = 0.0969;$ $C = 12.80;$ $a = 3.80;$ $w_m = 0.370.$

t	ax	k	k/c
0.15	3.76		
19.15	2.55	0.00902	0.0278
19.65	2.51	0.00917	0.0281
43 · 10	1.59	0.00878	0.0269
$46 \cdot 36$	1.50	0.00871	0.0267

Mittelwerte... 0.00887 0.0272

$$k \text{ ber.} = 0.00870;$$

 $f^{0}/_{0} = +1.92;$
 $v = 0.134.$

Tabelle IV.

$$w_0 = 0.650.$$

Nr. 1.

$$c = 0.6534$$
; $A = 0.0970$; $C = 25.64$; $a = 3.81$
 $w_m = 0.681$.

ŧ	a-x	\boldsymbol{k}	k/c
0.5	3.73		
4.90	$3 \cdot 24$	0.0143	0.0219
23.40	1.78	0.0141	0.0216
23.50	1.78	0.0141	0.0215
$47 \cdot 85$	0.84	0.0137	0.0210
$47 \cdot 95$	0.76	0.0146	0.0223
54.1	0.72	0.0134	0 0205

Mittelwerte... 0.0140 0.0214

k ber. =
$$0.0139$$
;
 $f^{0}/_{0} = +0.71$;
 $v = 0.050$.

128 A. Kailan,

c = 0.3258; A = 0.0967; C = 12.78; a = 3.80, $w_m = 0.675.$

Nr. 2.

t	a-x	k	k/c	
0.52	$3 \cdot 75$			
23.50	$2 \cdot 92$	0.00485	0.0149	
48.00	$2 \cdot 22$	0.00485	0.0149	
$54 \cdot 35$	$2 \cdot 12$	0.00465	0.0143	
76.05	1.64	0.00479	0.0147	
$98 \cdot 45$	$1 \cdot 34$	0.00459	0.0141	
144.9	0.87	0.00442	0.0136	
Mi	ttelwerte	0.00467	0.0143	

Mittelwerte . . . 0 · 00467 0 · 0143

$$\begin{array}{ll} k \; \mathrm{ber.} = & 0 \cdot 00477_4; \\ f^0/_0 = -2 \cdot 23; \\ v = & 0 \cdot 156. \end{array}$$

Nr. 3. c = 0.1620; A = 0.0967; C = 6.35; a = 3.80; $w_m = 0.676$.

t	<i>a</i> — <i>x</i>	k	k/c
0.45	$3 \cdot 79$		
$47 \cdot 9$	3.13	0.00175	0.01080
97.0	$2\cdot 55$	0.00178	0.01098
$144 \cdot 9$	$2 \cdot 13$	0.00173	0.01068
214.0	1.63	0.00171	0.01054
$297 \cdot 7$	1.15	0.00174	0.01075
$297 \cdot 8$	1.16	0.00173	0.01067

Mittelwerte... 0.00173_4 0.01071

k ber. =
$$0.00173_0$$
;
 $f^0/_0 = +0.23$;
 $v = 0.016$.

Tabelle V.
$$w_0 = 1.261$$
.

Nr. 1.

$$c = 0.6530$$
; $A = 0.0969$; $C = 25.62$; $a = 3.80$; $w_m = 1.289$.

		a-x				
t	a-x	ber.	Diff.	\boldsymbol{k}	k/c	$k_1^{\ 1}$
0.3	3.68	3.78	-0.10			
19.65	2.75	2.82	0.07	0.00716	0.01097	0.00654
44.50	1.93	1.95	-0.02	0.00662	0.01011	0.00635
46.55	1.85	1.89	-0.04	0.00672	0.01029	0.00646
$71 \cdot 70$	1.33	1.30	+0.03	0.00636	0.00974	0.00619
91.30	1.02	0.95	+0.07	0.00626	0.00959	0.00612
		Mitte	lwerte	0.00655	0.01003	0.00630

$$k \text{ ber.} \equiv 0.00652_2;$$

 $f^0/_0{}^2 \equiv +0.44;$
 $v^2 \equiv 0.030.$

Nr. 2.

$$c = 0.3265$$
; $A = 0.0969$; $C = 12.81$; $a = 3.80$; $w_m = 1.288$.

t	a-x	\boldsymbol{k}	k/c	k_1^{3}
0.45	3.71			
19.70	3.39	0.00254	0.00779	0.00204
47.05	5 2.97	0.00229	0.00700	0.00207
140.5	1.97	0.00204	0.00623	0.00196
144.5	1.89	0.00210	0.00644	0.00203
209.8	1.42	0.00204	0.00625	0.00199
281.5	1.07	0.00196	0.00900	0.00192
	Mittelwerte	0.00204	0.00625	0.00198

$$\begin{array}{l} k \, \mathrm{ber.} = & 0 \cdot 00202_{6}; \\ f^{0}/_{0}{}^{2} = & +0 \cdot 69; \\ v^{2} = & 0 \cdot 048. \end{array}$$

¹ k_1 von t = 0.3, $a - x_1 = 3.68$ an gerechnet.

 $^{^2} f^0/_0$ und v beziehen sich, wo nicht anders angegeben, auf die von t=0 gerechneten Konstanten k.

³ k_1 von t = 0.45, $a - x_1 = 3.71$ gerechnet.

Nr. 3. c = 0.1621; A = 0.0968; C = 6.36; a = 3.80; $w_m = 1.280$.

t	a-x	k	k/c
0.32	$3 \cdot 74$	-	
46.60	3.52	0.000708	0.00437
76.05	$3 \cdot 32$	0.000768	0.00474
140.6	2.90	0.000833	0.00514
$209 \cdot 9$	2.60	0.000784	0.00484
$305 \cdot 4$	$2 \cdot 15$	0.000809	0.00499
376.9	1.92	0.000786	0.00485
	Mittelwerte	0.000794	0.00490
	k ber. \equiv	0.000794:	

k ber. =
$$0.000794$$
;
 $f^{0}/_{0} = 0$;
 $v = 0$.

Die Zahlen zeigen, daß auch bei dieser Säure wie bei allen früher untersuchten in wasserreicherem Alkohol die Geschwindigkeitskonstante rascher wächst als die HCl-Konzentration:

$$w_m = 0.675 \text{ bis } 0.681$$
 $c \dots 0.1620 \quad 0.3258 \quad 0.6534$
 $10^4 \cdot k/c \dots \quad 107 \quad 143 \quad 214$
 $w_m = 1.280 \text{ bis } 1.289$
 $c \dots 0.1621 \quad 0.3265 \quad 0.6530$
 $10^4 \cdot k/c \dots \quad 49.0 \quad 62.5 \quad 100.3$

3. Versuche über die Verseifung des Metaoxybenzoesäureäthylesters durch alkoholische Salzsäure.

Aus dem bereits bei den Amidosäuren erörterten Grunde wurde auch mit dem m-Oxybenzoesäureäthylester je ein Verseifungsversuch in wasserarmer und in wasserreicher weingeistiger Lösung angestellt.

Tabelle VI.

Nr. 1.

$$c = 0.6286$$
; $E = 0.1561$; $C = 24.70$; $e = 6.12$; $w_0 = 0.060$.

	C		
	nach der Acid-	nach der Cl-	
t	Bestim	mung	C ber. 1
$0\cdot 4$	$24 \cdot 70$	$24 \cdot 57$	24.70
148 · 1	$24 \cdot 38$	$24 \cdot 37$	$24 \cdot 48$
500.9	23.70	$23 \cdot 78$	23.95
672	23.50		23.69

Nr. 2.

$$c = 0.6653$$
; $E = 0.1571$; $C = 26.11$; $e = 6.17$; $w_0 = 1.283$.

	nach der Acid- nach der Cl-		
t	Bestim	mung	
0.4	26.12	26.04	
148.5	26.10	26.06	
501.4	26.02	25.95	
$935 \cdot 5$	$25 \cdot 95$		

Es läßt sich demnach weder in wasserarmem noch in wasserreicherem Alkohol mit Sicherheit Verseifung konstatieren.

Dagegen hatte sich bei dem Ester der Benzoesäure² sowie bei den untersuchten Amido-³ und Nitrobenzoesäureestern³ in wasserreicherem Alkohol Verseifung durch alkoholischen Chlorwasserstoff konstatieren lassen. Es war auch dort versucht

¹ $C_{\text{ber.}} = C - D$, wenn $D = 6.10^{-5} Ct$ die durch Chloräthylbildung bis zur Zeit t verschwundene Menge HCl angibt, ausgedrückt in Kubikzentimeter zirka $^{1}/_{8}$ -norm. Ba $(OH)_{2}$ für je 5 cm^{3} Mischung.

² Monatshefte für Chemie, 27, 543 (1906).

³ L. c.

worden, die Verseifungskonstante zu berechnen. Doch ist es trotz der meist guten Übereinstimmung der errechneten Konstanten nicht zulässig, dabei, wie es dort geschehen ist, die Reaktion in der entgegengesetzten Richtung, die Wiederveresterung der entstandenen Säure, zu vernachlässigen. Man müßte daher nach der Gleichung für Reaktionen mit Gegenreaktionen rechnen:

$$\frac{dx}{dt} = k_2(e-x) - k_1 x,$$

was aber mit Schwierigkeiten verbunden ist, da $\frac{k_2}{k_1}$ nicht experimentell ermittelt wurde. Die Schwierigkeit läßt sich aber (worauf mich Prof. Wegscheider aufmerksam gemacht hat) umgehen, da die Esterkonzentration angenähert als konstant betrachtet werden kann.

Es wurde daher nach folgender Gleichung gerechnet:

$$\frac{dx}{dt} = k_2 e_m - k_1 x;$$

 e_m bedeutet hier die mittlere Esterkonzentration in Kubikzentimeter äquivalenter Barytlauge für 5 cm^3 Mischung. Durch Integration obiger Gleichung zwischen den Grenzen 0 und t erhält man:

$$t = \frac{1}{k_1} \log \frac{\frac{k_2}{k_1} e_m}{\frac{k_2}{k_1} e_m - x},$$

wo k_1 die nach der angeführten allgemeinen Formel (also mit Brigg'schen Logarithmen) gerechnete Veresterungskonstante ist. Setzt man in obigen Ausdruck das bekannte k_1 ein, so erhält man k_2 als die mit Brigg'schen Logarithmen gerechnete Verseifungskonstante.

So ergibt sich für den Benzoesäureester für c = 0.7065 und w = 3.33:

$$k_2 = 0.000075$$

und im Gleichgewicht 95% Ester und 5% Säure.

Für den p-Amidobenzoesäureester findet man für c = 0.6728 (c' = 0.5837) und w = 2.02:

$$k_2 = 0.00013$$

und im Gleichgewicht 95.4% Ester und 4.6% Säure.

Endlich sind die diesbezüglichen Werte für den Ester der m-Nitrobenzoesäure (bei c=0.6728 und w=1.45):

$$k_2 = 0.00009$$

im Gleichgewicht $97 \cdot 4^{\circ}/_{0}$ Ester und $2 \cdot 6^{\circ}/_{0}$ Säure; für den Ester der *p*-Nitrobenzoesäure (bei $c = 0 \cdot 6201$ und $w = 2 \cdot 12$):

$$k_2 = 0.00011$$

und im Gleichgewicht 93·3°/₀ Ester und 6·7°/₀ Säure.

4. Abhängigkeit der Geschwindigkeitskonstanten vom Wassergehalt und von der HCl-Konzentration.

Die Konstanten der Reaktionsgeschwindigkeit lassen sich in analoger Weise wie bei den früher untersuchten Säuren als Funktionen von Wassergehalt und HCl-Konzentration darstellen. Man erhält so:

$$\frac{1}{k} = 4 \cdot 81 + \frac{14 \cdot 01}{c} - \frac{0 \cdot 5371}{c^2} + \frac{15 \cdot 06}{c} + \frac{15 \cdot 06}{c^2} w + \frac{112 \cdot 1}{c} - \frac{7 \cdot 642}{c^2} w^2.$$

Die Ermittlung der Konstanten obiger Formel geschah in der bereits bei den Amidosäuren besprochenen Weise (k gilt für Rechnung mit Brigg'schen Logarithmen). Die Formel gilt für Wassergehalte zwischen w = 0.02 und 1.3 und für HCl-Gehalte von 0.16 bis 0.66.

Die Prüfung, inwieweit diese Formel die Versuche darstellt, geschah in analoger Weise wie bei den Amidosäuren. Die berechneten k, die Werte für $f^0/_0$ und für v sind hier schon bei den einzelnen Versuchsreihen angegeben, ebenso die berechneten Werte von (a-x) in jenen Fällen, wo sich die Rückrechnung aus den bereits bei der Benzoesäure besprochenen Gründen notwendig erwies.

Wie man aus den berechneten Größen sieht, stellt die Formel die Versuche gut dar.

Paraoxybenzoesäure.

1. Versuche mit »absolutem« Alkohol.

Tabelle VII.

$$c = 0.6518$$
; $A = 0.1124$; $C = 25.58$; $a = 4.41$; $d = \frac{24.97^{\circ}}{4^{\circ}} = 0.78562$;

$$w_0 = 0.052; \quad w_m = 0.085.$$

t	a-x	(a-x) ber.	Diff.	\boldsymbol{k}	k/c	$k_1^{\ 1}$
0.35	4.40	4.36	+0.04			
$5 \cdot 47$	3.77	3.70	+0.07	0.01243	0.0190	0.01312
9.09	$3^{\cdot}42$	$3 \cdot 29$	+0.13	0.01217	0.0186	0.01258
24.75	$2 \cdot 17$	$2 \cdot 05$	+0.12	0.01243	0.0190	0.01259
29.65	1.77	1.78	+0.01	0.01336	0.0205	0.01350
$49 \cdot 15$	1.07	1.01	+0.06	0.01251	0.0192	0.01259
73.08	0.52	0.52	+0.03	0.01237	0.0189	0.01242

Mittelwerte... 0.01266 0.0194 0.01281

k ber. =
$$0.01339$$
;
 $f^{0}/_{0} = -5.69 (-4.45)$;²
 $v = 0.46 (0.36)$.²

¹ Von t = 0.35, $a - x_1 = 4.40$ an gerechnet.

 $^{^2}$ Die Zahlen in Klammern beziehen sich auf die Rechnung von $t=0\cdot 35,$ $a-x_1=4\cdot 40\,$ an.

Nr. 2.

$$c = 0.3262$$
; $A = 0.1124$; $C = 12.80$; $a = 4.41$;
Alkohol wie bei Nr. 1; $w_m = 0.085$.

t	a-x	k	k/c
0.35	$4 \cdot 37$		
16.55	$3 \cdot 32$	0.00746	0.0228
$22 \cdot 65$	3.08	0.00688	0.0211
41.70	$2 \cdot 30$	0.00678	0.0208
48.33	$2 \cdot 05$	0.00688	0.0211
$89 \cdot 85$	1 · 12	0.00661	0.0203
114.0	0.85	0.00627	0.0192
Mit	telwerte	0.00670	0.0205
	k ber. $=$	0.00676;	

$$k \text{ ber.} = 0.00676$$

 $f^{0}/_{0} = -0.79;$
 $v = 0.064.$

Nr. 3.

$$c = 0.3270$$
; $A = 0.1127$; $C = 12.83$; $a = 4.42$; Alkohol wie bei Nr. 1; $w_m = 0.082$.

· t	<i>a</i> — <i>x</i>	k	k/c
0.35	$4 \cdot 47$		*******
16.65	$3 \cdot 37$	0.00708	0.0217
22.70	3.01	0.00735	0.0225
$25 \cdot 90$	2.90	0.00707	0.0216
41.75	$2 \cdot 29$	0.00684	0.0209
66.20	1.67	0.00939	0.0195
80.0	1 · 17	0.00642	0.0196
;	Mittelwerte	0.00676	0.0207
	k ber. —	0.00683	

k ber. =
$$0.00683$$
;
 $f^{0}/_{0} = -1.03$;
 $v = 0.083$.

136 A. Kailan,

Nr. 4. c = 0.1626; A = 0.1127; C = 6.38; a = 4.42;

Alkohol wie bei Nr. 1; $w_m = 0.081$.

t	ax	\boldsymbol{k}	k/c
0.43	$4 \cdot 45$		
17.93	3.80	0.00367	0.0226
41.80	$3 \cdot 22$	0.00329	0.0203
90.05	$2 \cdot 25$	0.00326	0.0200
$94 \cdot 8$	2.18	0.00324	0.0199
114.4	1.94	0.00313	0.0192
151 · 9	1 · 47	0.00312	0.0194

Mittelwerte... 0.00322 0.0198

$$k \text{ ber.} = 0.003255;$$

 $f^{0}/_{0} = -1.09;$
 $v = 0.088.$

Nr. 5.

$$c = 0.6673;$$
 $A = 0.1037;$ $C = 26.18;$ $a = 4.07;$ $d\frac{25^{\circ}}{4^{\circ}} = 0.78563;$

$$w_0 = 0.057; \quad w_m = 0.089.$$

ŧ	<i>a</i> — <i>x</i>	k	k/c
0.4	4.12		
$6\cdot25$	3.30	0.0146	0.0218
$24 \cdot 40$	1.92	0.0134	0.0200
$24 \cdot 83$	1.85	0.0139	0.0207
30.12	1.65	0.0130	0.0195
$49 \cdot 25$	0.86	0.0137	0.0205
50.40	0.85	0.0135	0.0202

Mittelwerte... 0.01341 0.0201

k ber. =
$$0.01362$$
;
 $f^{0}/_{0} = -1.57$;
 $v = 0.117$.

Nr. 6. $c = 0.3324; \quad A = 0.1034; \quad C = 13.05; \quad a = 4.06;$ Alkohol wie bei Nr. 5; $w_m = 0.086$.

t	a-x	a-x ber.	Diff.	k	k/c
0.40	4.00	4.03	-0.03		
$7 \cdot 65$	3.55	3.56	-0.01	0.00755	0.0227
24.15	$2 \cdot 73$	$2 \cdot 73$	± 0.00	0.00711	0.0214
28.65	2.53	$2 \cdot 55$	-0.02	0.00715	0.0215
$49 \cdot 15$	1.88	1.87	+0.01	0.00679	0.0204
70.85	$1 \cdot 37$	1.39	-0.02	0.00667	0.0201
$98 \cdot 15$	0.95	0.93	0.01	0.00641	0.0193

Mittelwerte... 0.00677 0.0203_{\odot}

k ber. =
$$0.00687$$
;
 $f^{0}/_{0} = -1.48$;
 $v = 0.110$.

Nr. 7.

$$c = 0.6620;$$
 $A = 0.0928;$ $C = 25.97;$ $a = 3.64;$ $a = \frac{25.03^{\circ}}{4^{\circ}} = 0.78530;$

$$w_0 = 0.017; \quad w_m = 0.046.$$

t	a-x	\boldsymbol{k}	k/c
0.25	$3 \cdot 63$		
5.55	3.03	0.0144	0.0218
19.93	1.88	0.0144	0.0218
$24 \cdot 45$	1.58	0.0148	0.0224
$28 \cdot 15$	1.41	0.0146	0.0221
45·1 0	0.83	0.0142	0.0215
47.80	0.73	0.0146	0.0221

Mittelwerte... 0 0145 $_5$ 0.0220

k ber. =
$$0.01439$$
;
 $f^{0}/_{0} = +1.10$;
 $v = 0.074$.

138 A. Kailan,

Nr. 8. c = 0.3311; A = 0.0928; C = 12.99; a = 3.64;

Alkohol wie bei Nr. 7; $w_m = 0.042$.

t	ax	\boldsymbol{k}	k/c
0.2	3.61		
5.75	$3 \cdot 28$	0.00791	0.0239
20.35	$2 \cdot 45$	0.00846	0.0256
28.00	2.10	0.00854	0.0258
45.35	1.53	0.00831	0.0251
70.35	1.02	0.00786	0.0237
75.50	0.95	0.00773	0.0234
Mi	ttelwerte	0.00812	0.0245

k ber. =
$$0.00779$$
;
 $f^{0}/_{0} = +4.06$;
 $v = 0.272$.

Nr. 9.

c = 0.1642; A = 0.0926; C = 6.44; a = 3.63; Alkohol wie bei Nr. 7; $w_m = 0.042$.

t	a-x	k	k/c
0.22	3.66		
20.55	$2 \cdot 96$	0.00432	0.0263
45.07	$2 \cdot 31$	0.00436	0.0266
71.50	1.88	0.00400	0.0244
$75 \cdot 65$	1.83	0.00393	0.0240
$96 \cdot 20$	1.52	0.00393	0.0240
142.8	1.03	0.00383	0.0233

Mittelwerte... 0.00398 0.0243

$$k \text{ ber.} = 0.00393_7;$$

 $f^0/_0 = +1.33;$
 $v = 0.089.$

$$c = 0.6577$$
; $A = 0.0976$; $C = 25.81$; $a = 3.83$; $a = \frac{25}{4}$ = 0.78536;

$$w_0 = 0.020; \quad w_m = 0.048.$$

t	a-x	k	k/c
0.3	3.82		
15.60	2.31	0.0141	0.0214
15.70	$2 \cdot 19$	0.0154	0.0235
$22 \cdot 20$	1.84	0.0143	0.0218
$40 \cdot 20$	1.00	0.0145	0.0221
$42 \cdot 52$	0.98	0.0139	0.0212

Mittelwerte... 0.0145 0.0220

k ber. =
$$0.0142_4$$
;
 $f^{0}/_{0} = +1.87$;
 $v = 0.132$.

Nr. 11.

$$c = 0.3289$$
; $A = 0.0976$; $C = 12.90$; $a = 3.83$;
Alkohol wie bei Nr. 10; $w_m = 0.048$.

t	a-x	k	k/c
0.35	3.81		_
15.80	$2 \cdot 88$	0.00783	0.0238
22:30	2.61	0.00747	0.0227
40.30	1.89	0.00761	0.0231
$45 \cdot 70$	1.74	0.00750	0.0228
$65 \cdot 20$	$1 \cdot 27$	0.00735	0.0224
93.00	0.81	0.00726	0.0221

k ber. =
$$0.00751$$
;
 $f^{0}/_{0} = -0.67$;
 $v = 0.047$.

Ordnet man die Versuche mit dem mittleren Wassergehalte 0.042 bis 0.048 nach steigender Salzsäurekonzentration, so erhält man:

$$c$$
 0·1642 0·3289 0·3311 0·6577 0·6620 10⁴. k/c 243 227 245 220 220 10³. w_m 42 48 42 48 46

Obige Werte der k/c scheinen wieder einen Gang in dem Sinne aufzuweisen, daß die Reaktionsgeschwindigkeit etwas langsamer als die HCl-Konzentration wächst. Doch überschreiten auch hier die Abweichungen der äußersten Werte (0.0245 und 0.0220) nicht die möglichen Versuchsfehler. Der Mittelwert würde 0.0231 für $w_m = 0.045$ betragen. Bei etwas größerer Wasserkonzentration zeigt sich jedenfalls ein solcher Gang nicht mehr, wie die nachstehende Zusammenstellung der Versuche mit dem mittleren Wassergehalt 0.081 bis 0.089 lehrt:

$$c.....$$
 0·1626 0·3262 0·3270 0·3324 0·6518 0·6673 10⁴. k/c 198 205 207 204 194 201 10³. w_m 81 85 82 86 85 89

Die k/c schwanken hier unregelmäßig um einen Mittelwert von 0.0202 für $w_m = 0.085$. Die Abweichungen der äußersten Werte (0.0207 und 0.0194) übersteigen nicht die möglichen Versuchsfehler. Es ist also hier die Veresterungsgeschwindigkeit der Salzsäurekonzentration proportional.

2. Versuche mit wasserhaltigem Alkohol.

Tabelle VIII.

 $w_0 = 0.356$ bis 0.357.

Nr. 1.

$$c = 0.6647$$
; $A = 0.1034$; $C = 26.09$; $a = 4.05$; $w_0 = 0.357$; $w_m = 0.389$.

Mittelwerte... 0:00881 0:01328

k ber. =
$$0.00864$$
;
 $f^{0}/_{0} = 1.93$;
 $v = 0.144$.

Nr. 2.

$$c = 0.3322;$$
 $A = 0.1033;$ $C = 13.04;$ $a = 4.05;$ $w_0 = 0.357;$ $w_m = 0.386.$

k ber. =
$$0.00334$$
;
 $f^{0}/_{0} = +4.57 (+1.18)$; $v = 0.341 (0.088)$.

Mittelwerte... 0.00350 0.01052 0.00338

¹ Von $t_1 = 0$ gerechnet.

² Von $t_1 = 0.4$ gerechnet.

Nr. 3.

$$c = 0.1648; \quad A = 0.1031; \quad C = 6.47; \quad a = 4.04;$$

 $w_0 = 0.356; \quad w_m = 0.382.$

ŧ	<i>a</i> — <i>x</i>	(a-x) ber.	Diff.	k	k/c
0.85	4.03	4.03	+0.00		
40.5	3.51	3.56	0.05	0.00152	0.00921
88.1	3.01	3.07	-0.06	0.00145	0.00882
$161 \cdot 7$	$2\cdot 43$	$2 \cdot 46$	-0.03	0.00137	0.00830
$254 \cdot 7$	1.86	1.88	0.02	0.00132	0.00803
$254 \cdot 9$	1.81	1.88	0.07	0.00137	0.00831
$352 \cdot 8$	1.43	1.40	-0.03	0.00128	0.00787

Mittelwerte... 0.00135 0.00819

$$k \text{ ber.} = 0.00131_4;$$

 $f^0/_0 = +2.67;$
 $v = 0.199.$

Tabelle IX.

$$w_0 = 0.665.$$

Nr. 1.

$$c = 0.6644$$
; $A = 0.1033$; $C = 26.08$; $a = 4.05$
 $m_m = 0.682$.

t	a-x	k	h/c
0.45	4.02		
$16 \cdot 15$	$3 \cdot 34$	0.00520	0.00723
$22 \cdot 95$	$2 \cdot 95$	0.00601	0.00904
39.50	2.54	0.00514	0.00773
44.10	$2 \cdot 22$	0.00592	0.00892
$64 \cdot 45$	$1 \cdot 78$	0.00555	0.00834

Mittelwerte . . . 0 · 00558 0 · 00839

k ber. =
$$0.00568$$
;
 $f^{0}/_{0} = -1.79$;
 $v = 0.134$.

c = 0.3323; A = 0.1033; C = 13.04; a = 4.05; $w_m = 0.687.$

Nr. 2.

t	<i>a</i> — <i>x</i>	k	k/c
0.45	4.01		
$16 \cdot 20$	3.78	0.00186	0.00561
40.35	$3 \cdot 34$	0.00208	0.00627
$93\cdot 25$	2.64	0.00200	0.00600
158.7	$2 \cdot 01$	0.00193	0.00581
208:3	1.66	0.00168	0.00560
$254 \cdot 7$	1.38	0.00184	0.00553

Mittelwerte . . . 0 · 00190 0 · 00571

$$k \text{ ber.} = 0.00195_4;$$

 $f^0/_0 = -2.84;$
 $v = 0.212.$

Nr. 3.

$$c = 0.1652$$
; $A = 0.1033$; $C = 6.48$; $a = 4.05$; $w_m = 0.685$.

t	a-x	k	k/c
0.65	4.04		
40.70	$3 \cdot 77$	0.000771	0.00467
111.1	$3 \cdot 34$	0.000756	0.00458
208.6	2.82	0.000755	0.00457
281.0	$2 \cdot 60$	0.000685	0.00415
$353 \cdot 6$	$2 \cdot 28$	0.000707	0.00428
401.3	2.10	0.000712	0.00431

Mittelwerte... 0.000715 0.00433

k ber. =
$$0.000742$$
;
 $f^{0}/_{0} = -3.77$;
 $v = 0.281$.

Tabelle X.
$$w_0 = 1 \cdot 26_1.$$

Nr. 1.

$$c = 0.6540$$
; $A = 0.1128$; $C = 25.67$; $a = 4.42_5$; $w_m = 1.288$.

t	a-x	k	k/c
0.10	4.38		
18.60	3.95	0.00265	0.00405
$69 \cdot 9$	$2 \cdot 83$	0.00278	0.00425
$91 \cdot 1$	2.53	0.00267	0.00407
125.5	1.88	0.00296	0.00453
$163 \cdot 2$	1.68	0.00259	0.00395

Mittelwerte ... 0.00273 0.00417

k ber. =
$$0.00269$$
;
 $f^{0}/_{0} = +1.47$;
 $v = 0.119$.

Nr. 2.

$$c = 0.3271;$$
 $A = 0.1128;$ $C = 12.83;$ $a = 4.42_5;$ $w_m = 1.283.$

t	a-x	k	$m{k}/c$
0.45	$4 \cdot 37$		
$70 \cdot 15$	3.83	0.000894	0.00273
163.6	3.07	0.000971	0.00297
188.2	3.05	0.000881	0.00270
257.6	2.69	0.000843	0.00258
$353 \cdot 9$	$2 \cdot 22$	0.000846	0.00259

Mittelwerte... 0:000872 0:00267

$$k \text{ ber.} = 0.000885;$$

 $f^{0}/_{0} = -1.49;$
 $v = 0.121.$

Nr. 3. $c = 0.1629; \quad A = 0.1130; \quad C = 6.39; \quad a = 4.43;$ $w_m = 1.276.$

t	<i>a</i> — <i>x</i>	k .	k/c
0.60	4.41		
$70 \cdot 40$	$4 \cdot 21$	0.000318	0.00195
163.5	3.86	0.000368	0.00226
$233 \cdot 0$	3.63	0.000373	0.00229
$354 \cdot 4$	$3 \cdot 34$	0.000347	0.00213
$452 \cdot 5$	3.10	0.000343	0.00211
$548 \cdot 0$	$2 \cdot 90$	0.000336	0.00206

$$Mittelwerte ... 0.000349_5 0.00215$$

k ber. =
$$0.000343_0$$
;
 $f^0/_0 = +1.86$;
 $v = 0.152$.

Die Zahlen zeigen wieder, daß die Veresterungsgeschwindigkeit in wasserreicherem Alkohol weit rascher als die HCl-Menge wächst:

$$w_m = 0.382 \text{ bis } 0.389$$
 $c \dots 0.1648 \quad 0.3322 \quad 0.6647$
 $10^5.k/c \dots 819 \quad 1052 \quad 1328$
 $w_m = 0.682 \text{ bis } 0.687$
 $c \dots 0.1652 \quad 0.3323 \quad 0.6644$
 $10^5.k/c \dots 433 \quad 571 \quad 839$
 $w_m = 1.276 \text{ bis } 1.288$
 $c \dots 0.1629 \quad 0.3271 \quad 0.6540$
 $10^5.k/c \dots 215 \quad 267 \quad 417$
 $10*$

3. Versuche über die Verseifung des Paraoxybenzoesäureäthylesters durch alkoholische Salzsäure.

In analoger Weise wie bei dem Ester der Metasäure wurden auch hier Versuche in wasserarmem und wasserreichem Alkohol angestellt.

Tabelle XI.

Nr. 1. $c = 0.6582; \quad E = 0.1367; \quad C = 25.82; \quad e = 5.38;$ $w_0 = 0.070.$

	(
	nach der Acid-	nach der Cl-	
ŧ	Bestim	mung	${\cal C}$ ber.
0.4	25.85	25.61	25.82
337	$25 \cdot 20$	$25 \cdot 28$	$25 \cdot 29$
696	$24 \cdot 6$	24.61	$24 \cdot 73$

Nr. 2.

$$c = 0.6567$$
; $E = 0.1626$; $C = 25.77$; $e = 6.38$; $w_0 = 0.070$.

	C	•	
	nach der Acid-	nach der Cl-	
	Bestim	mung	C ber.
0.6	$25 \cdot 85$	25.85	25.77
188	$25 \cdot 42$	25.59	25.48
498	24.90		$24 \cdot 99$
690	24.55	$24 \cdot 64$	$24 \cdot 69$

Nr. 3.
$$c = 0.6582; \quad E = 0.1319; \quad C = 25.82; \quad e = 5.18;$$

$$w_0 = 1.34.$$

	C				
	nach der Acid-	nach der Cl-			
t	Bestin	mung			
0.2	25.90	25.85			
187.5	25.94	$25 \cdot 70$			
475	25.80	$25 \cdot 77$			
690	$25 \cdot 75$				

Es läßt sich also auch hier wieder weder in wasserarmem noch in wasserreicherem Alkohol Verseifung konstatieren.

4. Abhängigkeit der Geschwindigkeitskonstanten vom Wassergehalt und von der Salzsäurekonzentration.

Eine analoge Gleichung wie bei der Metasäure stellt die Abhängigkeit der Konstanten der Veresterungsgeschwindigkeit von der HCl- und H₂O-Konzentration dar:

$$\begin{split} \frac{1}{k} &= 15 \cdot 83 + \frac{33 \cdot 45}{c} - \frac{0 \cdot 4722}{c^2} + \\ &+ \left(-94 \cdot 05 + \frac{90 \cdot 04}{c} + \frac{20 \cdot 27}{c^2} \right) w + \\ &+ \left(-119 \cdot 6 + \frac{158 \cdot 9}{c} - \frac{4 \cdot 066}{c^2} \right) w^2. \end{split}$$

Die Ermittlung der Konstanten dieser Gleichung geschah in der gleichen Weise wie bei den Amidosäuren (k gilt für die Rechnung mit Brigg'schen Logarithmen).

Die Formel gilt für Wassergehalte zwischen w = 0.02 und 1.3 sowie für HCl-Gehalte von 0.16 bis 0.66.

Die berechneten Größen, die auch hier bereits bei den diesbezüglichen Versuchsserien angegeben sind, zeigen, daß die Formel die Versuche gut wiedergibt. 148 A. Kailan,

5. Einfluß des bei der Reaktion gebildeten Wassers.

Nachstehend gebe ich noch die Berechnung eines Versuches mit größerer Paraoxybenzoesäurekonzentration. Bei dieser letzteren Versuchsreihe war der Farbenumschlag bei den Titrationen sehr unscharf.

Tabelle XII.

$$c = 0.3324;$$
 $A = 0.3101;$ $C = 13.05;$ $a = 12.17;$ $d\frac{25^{\circ}}{4^{\circ}} = 0.78563;$ $w_0 = 0.057.$

	(a-	-x)			
t	gef.	ber.	Differenz	k gef.	k/c gef.
0.32	12.05	12.10	0.05		
$7 \cdot 20$	10.7	10.8	-0.1	0.00775	0.0233
$24 \cdot 40$	8.6	8.5	+0.1	0.00617	0.0186
49.5	6.35	6.26	+0.1	0.00571	0.0172
71.15	$4 \cdot 9$	$4 \cdot 9$	± 0	0.00555	0.0167
146.05	2.55	$2\cdot 4$	+0.15	0.00465	0.0140
194.5	$1 \cdot 7$	1.55	+0.15	0.00439	0.0132

Mit Rücksicht auf den erwähnten unscharfen Farbenumschlag kann die Übereinstimmung auch hier noch als eine befriedigende bezeichnet werden; jedenfalls wird der als zulässig bezeichnete Fehler nirgends erreicht.

Vergleich der Oxybenzoesäuren mit den früher untersuchten Säuren.

Bei der Betrachtung einer Zusammenstellung der Konstanten der Oxysäuren mit denen der früher untersuchten Säuren fällt zunächst der sehr verschiedene Einfluß der Hydroxylgruppe je nach ihrer Stellung auf. Während sie in o- und p-Stellung sogar noch stärker verzögernd auf die Veresterung wirkt als die Nitrogruppe, wirkt sie in m-Stellung beschleunigend, so daß der Metaoxybenzoesäure in dem ganzen untersuchten Gebiet ein höherer Wert der Konstanten der Ver-

esterungsgeschwindigkeit zukommt als der Benzoesäure selbst. Ein ähnliches Verhältnis, daß also ein Substituent in o- und p-Stellung verzögernd, in m-Stellung beschleunigend wirkt, würde sich nach Goldschmidt's¹ Versuchen bei den Toluylsäuren ergeben. Doch muß die Frage, ob der Metatoluylsäure wirklich eine höhere Konstante zukommt als der Benzoesäure, bis Angaben über die Veresterungsgeschwindigkeit der ersteren bei genau bestimmten Wassergehalten vorliegen, noch unentschieden bleiben.

Nach den allerdings ziemlich unsicheren vergleichenden Versuchen von Kellas³ mit methylalkoholischem Chlorwasserstoff würde je nach der Temperatur die Metatoluylsäure bald etwas rascher, bald langsamer verestern als die Benzoesäure. Sollte es sich herausstellen, daß der p-Br-Benzoesäure nicht, wie Goldschmidt — allerdings als zweifelhaft — angibt, ein etwas größerer, sondern ein kleinerer Wert als der Benzoesäure zukommt, so würde auch der Ersatz von Wasserstoff durch Brom im oben erwähnten Sinne wirken, denn die m-Br-Benzoesäure verestert wohl zweifellos rascher als die Benzoesäure. Wenigstens fand Goldschmidt für »absoluten« Alkohol und normale HCl für erstere 0.0553, für letztere 0.0428, während freilich wieder Kellas in methylalkoholischer Lösung fand, daß außer bei 0° Benzoesäure rascher als m-Br-Benzoesäure verestert.

Für das Verhältnis der Konstanten der Ortho-, Meta- und Paraoxybenzoesäuren ergibt sich für

$$c = 0.3333$$
 und $w_m = 0.041...$ 1:30.8:11.5.

Kellas² findet mit methylalkoholischem Chlorwasserstoff und o-Nitrophenol als Indikator bei 35° zwar die gleiche Reihenfolge, aber weit geringere Unterschiede (nach 2 Stunden waren $15 \cdot 27^{\circ}/_{\circ}$, beziehungsweise $55 \cdot 97^{\circ}/_{\circ}$, beziehungsweise $51 \cdot 23^{\circ}/_{\circ}$ verestert).

Auch bei 25° findet er die gleiche Reihenfolge $(2 \cdot 24^{0})_{0}$, $18 \cdot 39^{0}_{0}$, $7 \cdot 83^{0}_{0}$; bei einem anderen Versuche für $o \cdot 5 \cdot 03^{0}_{0}$,

¹ Ber. der Deutschen chem. Ges., 28, 3218 [1895].

² Zeitschr. für physik. Chemie, 24, 221 [1897].

für m $14\cdot95^{\circ}/_{\circ}$), freilich mit Benützung des hier unbrauchbaren Phenolphtaleïns als Indikator. Darauf ist es vielleicht auch zurückzuführen, daß er für die Benzoesäure eine größere Veresterungsgeschwindigkeit findet als für die Metaoxybenzoesäure $(23\cdot74^{\circ}/_{\circ}:14\cdot95^{\circ}/_{\circ}$ bei einem Versuche, $23\cdot82^{\circ}/_{\circ}:18\cdot39^{\circ}/_{\circ}$ bei einem anderen). Er bespricht übrigens selbst den schwer zu erkennenden Farbenumschlag bei der Titration der p-Säure und sagt, daß die für die Ortho-, Meta- und Paraoxybenzoesäuren angegebenen Werte nicht auf dieselbe Genauigkeit Anspruch machen wie die für die anderen Säuren angegebenen.

Im übrigen ergibt sich noch, daß auch für die Oxybenzoesäuren ungefähr die gleichen Regelmäßigkeiten gelten, wie sie für die Nitro- und Amidobenzoesäuren¹ bereits dargelegt wurden; m bedeutet in der folgenden Übersicht das Mittel aus den für die Benzoesäure, die Nitro- und Amidobenzoesäuren gewonnenen Faktoren (bei den Amidosäuren sind nur die auf »freie« HCl-Konzentration bezogenen Werte berücksichtigt).² M ist das Mittel aus sämtlichen bisher untersuchten Säuren. Demnach finden wir:

1. Für gleiche HCl-Konzentrationen verändert ein bestimmter Wasserzusatz die Konstanten der m- und p-Oxybenzoesäuren in angenähert gleichem Verhältnisse wie die der früher untersuchten Säuren. Die Werte der k für w = 0.052 gleich 1.000 gesetzt, erhält man:

Für $c = 0.1667$	Oxybenzoesäuren				
	Meta	Para	111	M	
bei $w = 0.72 \dots$	0.163	0.187	0.181	0.179	
bei $w = 1.333$	0.076	0.088	0.078	0.079	
Für $c = 0.3333$					
bei $w = 0.72$	0.224	0.245	0.214	0.220	
bei $w = 1.333$	0.122	0.113	0.097	0.103	

¹ L. c.

² Da, wie bei den Amidosäuren bereits ausgeführt wurde, zum Teile nur die für die betreffende »freie«, nicht aber die für die Gesamt-HCl-Konzentration erhaltenen Faktoren mit den für die übrigen Säuren geltenden vergleichbar sind.

Für c = 0.6667

	Oxybenz	zoesäuren		
	Meta	Para	m	M
bei $w = 0.72$	0.361	0.379	0.369	0.369
bei $w = 1.333$	0.172	0.186	0.180	0.180

2. Bei gleicher Wasserkonzentration verändert Erhöhung der HCl-Konzentration die Konstanten der *m*- und *p*-Oxybenzoesäure angenähert im gleichen Verhältnisse wie die der früher untersuchten Säuren.

Setzt man die jeweiligen Konstanten für c=0.1667 gleich 1.00, so erhält man:

Für w = 0.72

	Oxybenzoesäuren			
	Meta	Para	m	M
bei $c = 0.3333$	2.72	$2 \cdot 62$	$2 \cdot 76$	$2 \cdot 74$
bei $c = 0.6667$	8.11	$7 \cdot 62$	8.88	8.59
Für $w = 1.333$				
bei $c = 0.3333$	3.18	2.58	$2 \cdot 73$	$2 \cdot 77$
bei $c = 0.6667$	8.35	$7 \cdot 97$	9.86	$9 \cdot 37$

3. Das Verhältnis zwischen den Konstanten für $^1/_6$ -, $^1/_3$ -, $^2/_3$ -normale HCl ist bei w=0.72 und w=1.333 ungefähr das gleiche:

Verhältnig im Mittel der M- und n-Oyugaure

vernatinis ini witter dei <i>m</i> - diid <i>p</i> -Oxysadie	
für $w = 0.72$	1:2.67:7.87
Verhältnis im Mittel der m- und p-Oxysäure	
für $w = 1.333$	1:2.88:8.19
Mittel obiger Verhältnisse	1:2.78:8.03
Verhältnis im Mittel bei sämtlichen unter-	1 . 0 . 74 . 0 . 50
suchten Säuren für $w = 0.72$	1:2.74:8.59
Verhältnis im Mittel bei sämtlichen unter-	
suchten Säuren für $w = 1.333$	1:2.77:9.37
Mittel obiger Verhältnisse	1:2.76:8.98

Zusammenfassung.

Es werden die Veresterungsgeschwindigkeiten der Ortho-, Meta- und Paraoxybenzoesäuren in wasserarmem Alkohol gemessen und die Reaktionsgeschwindigkeit wenigstens innerhalb der Versuchsfehler proportional der Salzsäuremenge gefunden.

Es wird die Veresterungsgeschwindigkeit der Meta- und Paraoxybenzoesäure auch in wasserreicherem Alkohol gemessen und die Abhängigkeit der Konstanten der Reaktionsgeschwindigkeit vom Wassergehalte des verwendeten Alkohols und der Konzentration des Chlorwasserstoffes für diese beiden Säuren durch Formeln dargestellt.

Es wird gezeigt, daß sich weder in wasserarmem noch in wasserreicherem Alkohol eine Verseifung des Meta- und des Paraoxybenzoesäureäthylesters durch alkoholische Salzsäure konstatieren läßt.

Es wird das Verhalten der Oxybenzoesäuren mit dem der Benzoesäure, ferner der Nitro- und Amidobenzoesäuren verglichen, wobei sich wieder bestimmte Analogien ergeben.

Es sei mir gestattet, Herrn Prof. R. Wegscheider für sein Interesse an meiner Arbeit auch hier bestens zu danken.